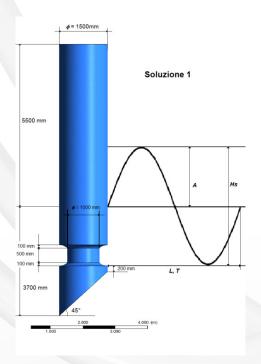
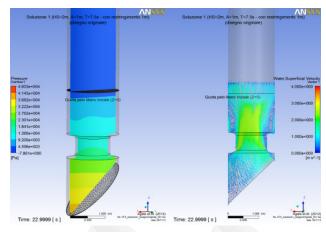
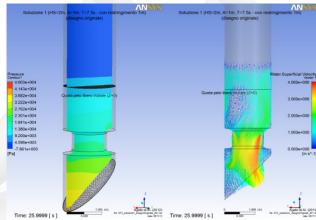
ENERGIA DAL MARE, Le nuove tecnologie per i mari italiani ENEA, 1 e 2 Luglio 2014

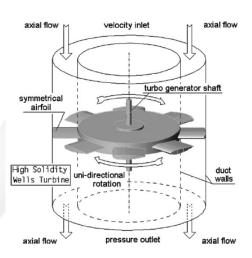
- 1. Principio di funzionamento
- 2. Ottimizzazione disegno componente fissa (CFX)
- 3. Analisi del dispositivo con girante Wells (CFX)
- 4. Studi in scala Laboratorio HMRC (Cork, Irlanda)
- 5. Attività correlate e sviluppi futuri



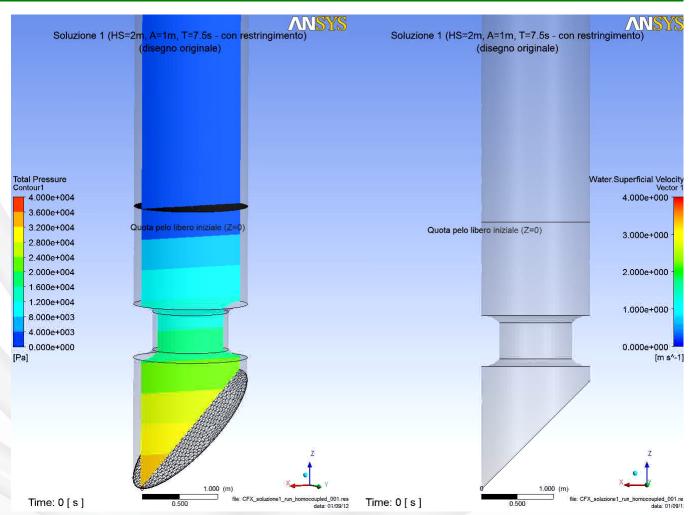
- 1. Principio di funzionamento
- 2. Ottimizzazione disegno componente fissa (CFX)
- 3. Analisi del dispositivo con girante Wells (CFX)
- 4. Studi in scala Laboratorio HMRC (Cork, Irlanda)
- 5. Attività correlate e sviluppi futuri


Principio di funzionamento


WAVE TUBE * - Oscillating water column con turbina nella fase liquida


Dispositivo tipo OWC

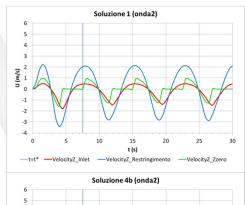
* Brevetto UE

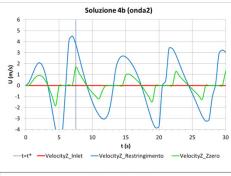

Campi di pressione (sinistra) e di velocità (destra), simulati con CFX

Turbina Wells installata nella fase liquida

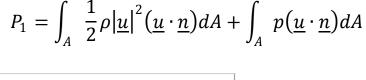
WAVE SAX - un dispositivo modulare innovativo per la generazione d'energia elettrica dal moto ondoso

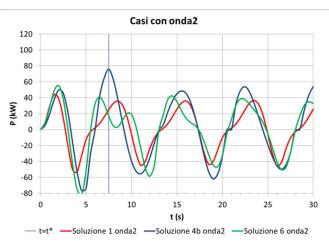
Simulazioni con RANS-CFD (Reynolds Average Navier-Stokes - Computational Fluid Dynamics) modelling

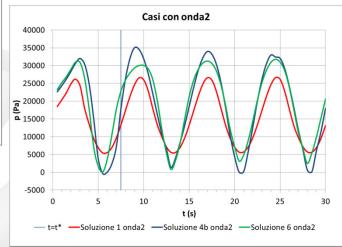

- 1. Principio di funzionamento
- 2. Ottimizzazione disegno componente fissa (CFX)
- 3. Analisi del dispositivo con girante Wells (CFX)
- 4. Studi in scala Laboratorio HMRC (Cork, Irlanda)
- 5. Attività correlate e sviluppi futuri



Soluzioni 1, 4b e 6


Flusso di potenza disponibile: termine cinetico + termine potenziale


G. Agate et al.

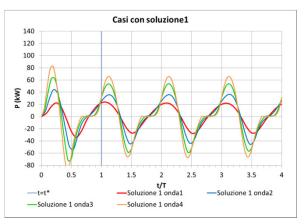


Profili della <u>potenza disponibile</u> Confronti in funzione della configurazione

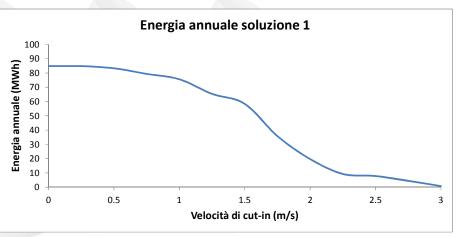
Profili della <u>velocità verticale</u> (media lungo la sezione)

Profili della <u>pressione statica</u>
Confronti in funzione della
configurazione

Simulazioni numeriche soluzioni progettuali


Soluzione 1

Energia annuale disponibile (velocità di cut-in nulla, pari a 1 m/s e a 2 m/s).


caso	Ampiezza	Occorrenza	Potenza disponibile	Energia annuale
	(m)	(%)	(kW)	(MWh)
onda nulla	0	44.3	0.0	0.0
Soluzione 1 onda1	0.5	44.5	15.9	62.0
Soluzione 1 onda2	1	8.7	22.2	16.9
Soluzione 1 onda3	1.5	2.2	26.9	5.2
Soluzione 1 onda4	2	0.3	29.5	0.7
totale	-	100.0	-	84.8

caso	Ampiezza	Occorrenza	Potenza disponibile	Energia annuale		
	(m)	(%)	(kW)	(MWh)		
onda nulla	0	44.3	0.0	0.0		
Soluzione 1 onda1	0.5	44.5	14.0	54.5		
Soluzione 1 onda2	1	8.7	20.4	15.6		
Soluzione 1 onda3	1.5	2.2	25.0	4.9		
Soluzione 1 onda4	2	0.3	29.1	0.7		
totale	-	100.0	-	75.6		

caso	Ampiezza	Occorrenza	Potenza disponibile	Energia annuale
	(m)	(%)	(kW)	(MWh)
onda nulla	0	44.3	0.0	0.0
Soluzione 1 onda1	0.5	44.5	1.4	5.4
Soluzione 1 onda2	1	8.7	12.6	9.6
Soluzione 1 onda3	1.5	2.2	21.1	4.1
Soluzione 1 onda4	2	0.3	25.7	0.6
totale	-	100.0	-	19.7

Energia annuale teorica pari a 65 MWh/m (97,5 MWh)

Energia annua disponibile in funzione della velocità di cut-in

WAVE SAX - un dispositivo modulare innovativo per la generazione d'energia elettrica dal moto ondoso

Potenza totale disponibile (velocità cut-in nulla)

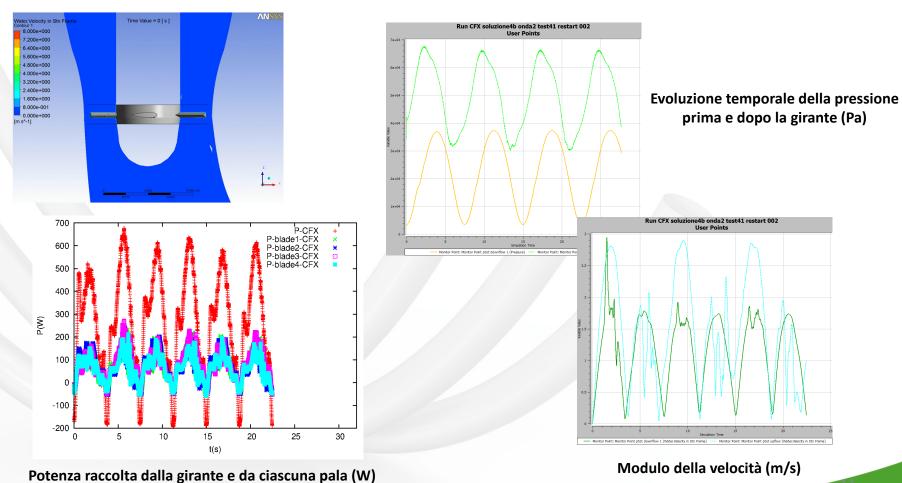
V _{cut-in} =0 m/s	Potenza disponibile	Potenza disponibile / P0	Termine cinetico	Termine potenziale	Velocità medie	Velocità massime	Potenza down	Potenza up
	(kW)	(%)	(kW)	(kW)	(m/s)	(m/s)	(kW)	(kW)
Senza restringimento onda2	23.8	100.0	0.9	22.9	0.2	1.5	11.1	12.7
Soluzione 1 onda2	22.2	93.4	3.2	19.0	0.9	2.9	10.5	11.7
Soluzione 4b onda2	34.0	143.0	6.7	27.3	1.1	3.9	16.4	17.6
Soluzione 6 onda2	25.1	105.7	5.2	20.0	1.0	4.1	12.2	12.9

V _{cut-in} =1 m/s	Potenza disponibile	Potenza disponibile / P0	Termine cinetico	Termine potenziale	Velocità medie	Velocità massime	Potenza down	Potenza up
	(kW)	(%)	(kW)	(kW)	(m/s)	(m/s)	(kW)	(kW)
Senza restringimento onda2	14.7	100.0	0.7	14.0	0.2	1.5	6.0	8.7
Soluzione 1 onda2	20.4	138.8	3.1	17.3	0.9	2.9	9.9	10.5
Soluzione 4b onda2	31.5	214.3	6.6	25.0	1.1	3.9	14.4	17.1
Soluzione 6 onda2	22.5	153.0	4.6	17.9	1.0	4.1	11.8	10.7

V _{cut-in} =2 m/s	Potenza disponibile	Potenza disponibile / P0	Termine cinetico	Termine potenziale	Velocità medie	Velocità massime	Potenza down	Potenza up
	(kW)	(%)	(kW)	(kW)	(m/s)	(m/s)	(kW)	(kW)
Senza restringimento onda2	0.0	-	0.0	0.0	0.2	1.5	0.0	0.0
Soluzione 1 onda2	12.6		2.4	10.2	0.9	2.9	7.3	5.3
Soluzione 4b onda2	19.3	-	3.8	15.5	1.1	3.9	10.0	9.3
Soluzione 6 onda2	13.2	-	2.1	11.1	1.0	4.1	8.6	4.6

Potenza totale disponibile (velocità cut-in 1 m/s).

Potenza totale disponibile (velocità cut-in 2 m/s).



- 1. Principio di funzionamento
- 2. Ottimizzazione disegno componente fissa (CFX)
- 3. Analisi del dispositivo con girante Wells (CFX)
- 4. Studi in scala Laboratorio HMRC (Cork, Irlanda)
- 5. Attività correlate e sviluppi futuri

Analisi del dispositivo con girante Wells

Simulazione con portata variabile indotta dall'onda di modellazione (Hs = 2m; T=7,5 s)

- 1. Principio di funzionamento
- 2. Ottimizzazione disegno componente fissa (CFX)
- 3. Analisi del dispositivo con girante Wells (CFX)
- 4. Studi in scala Laboratorio HMRC (Cork, Irlanda)
- 5. Attività correlate e sviluppi futuri

Studi a scala in vasca marina

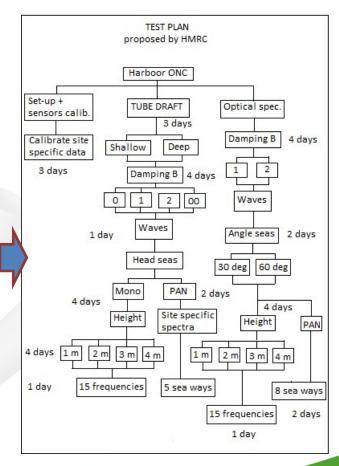
HMRC - Hydraulics and Marine Research Centre

Phase One - Validation Model

- •Fundamental Testing in regular waves in a laboratory
- •Scale: 1:25 100

Phase Two - Validation & Design Model

- ·Testing in realistic sea conditions in a laboratory
- •Scale: 1:10 25


Phase Three - Process Model

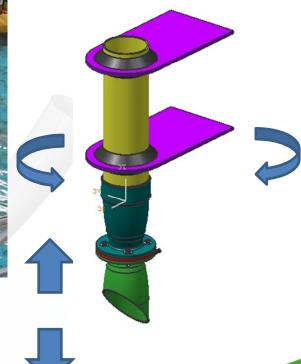
- •Testing in conditions representative of deployment site either in a laboratory or at sea
- •Scale: 1:10 15 or 1:1 4

«Development and Evaluation Protocol»

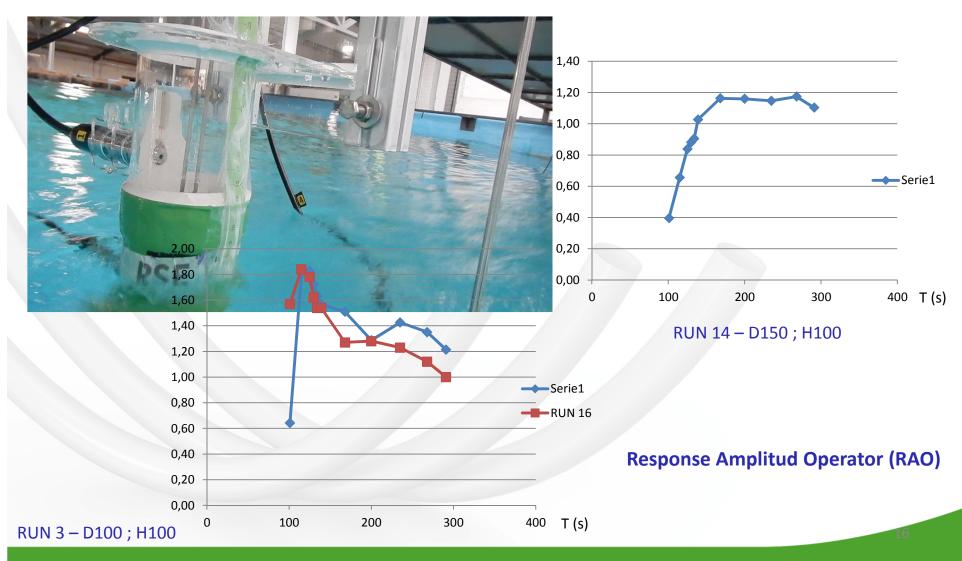
Testing plan

(scale 1:20)

Costruzione prototipo

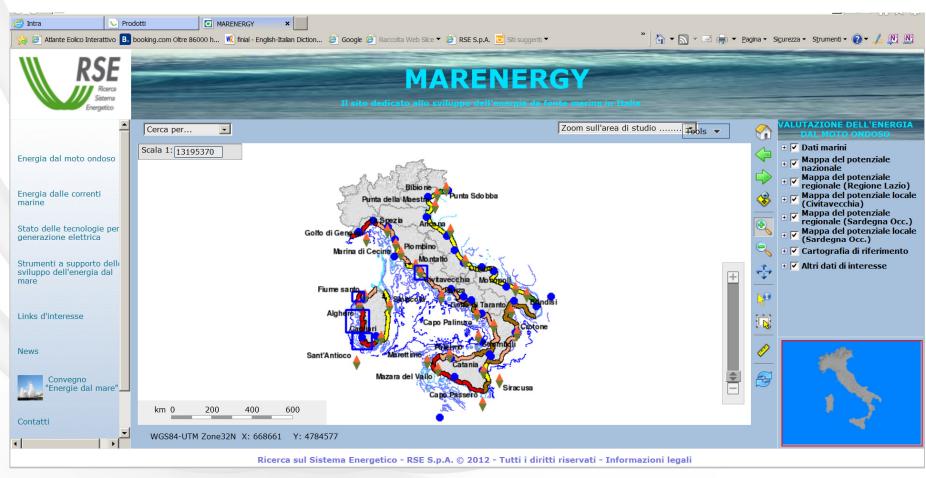


Prove in vasca marina

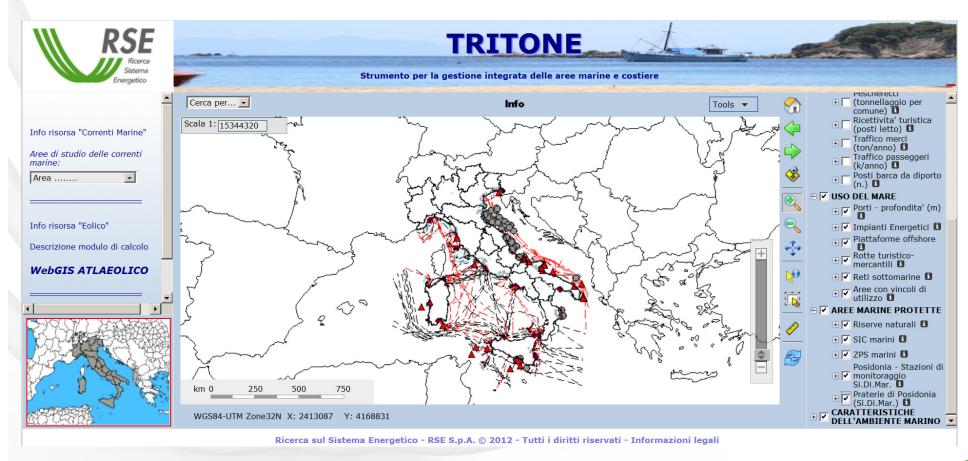

imbocco, sommergenza, direzione, perdita di carico girante

WAVE SAX - un dispositivo modulare innovativo per la generazione d'energia elettrica dal moto ondoso

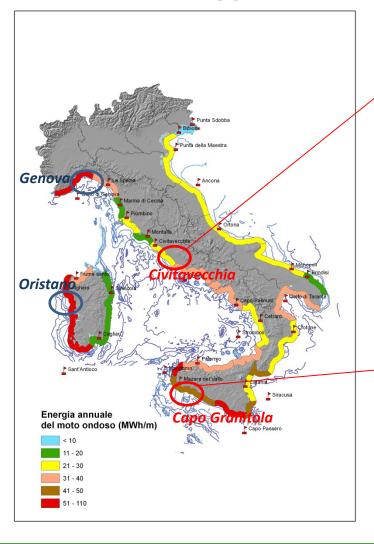
Prove in vasca marina



- 1. Principio di funzionamento
- 2. Ottimizzazione disegno componente fissa (CFX)
- 3. Analisi del dispositivo con girante Wells (CFX)
- 4. Studi in scala Laboratorio HMRC (Cork, Irlanda)
- 5. Attività correlate e sviluppi futuri

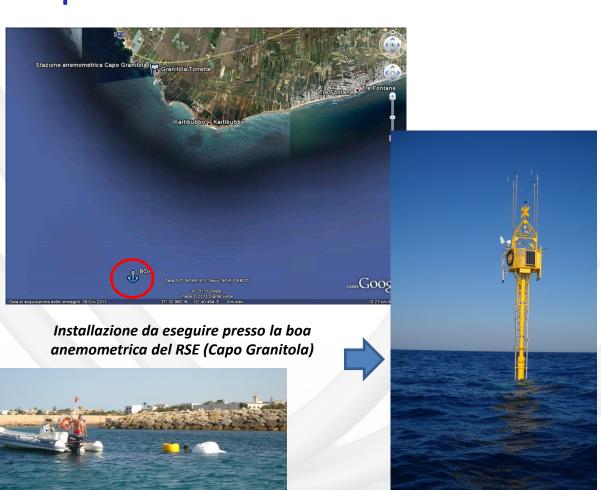

Mappatura della risorsa marina: MARENERGY

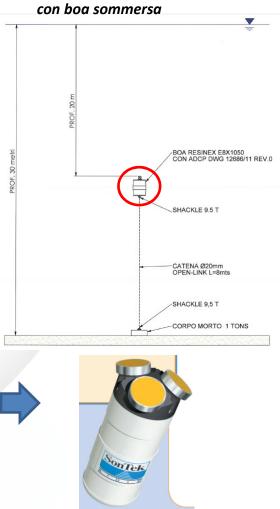
http://map.rse-web.it/mares/map.phtml


Risorse rinnovabili e gestione integrata delle aree marine costiere : TRITONE

http://map.rse-web.it/tritone/map.phtml

Stazioni di monitoraggio del moto ondoso

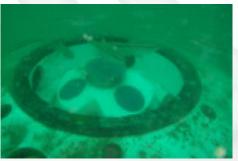

Porto di Civitavecchia (Tirreno)


Capo Granitola (Sicilia)

Capo Granitola

Schema d'installazione

Sontek Mini ADP-1,5 MHz



Porto di Civitavecchia

Barnacle + Mini ADP 1,5 MHz

Sito potenziale installazione pilota del WAVE SAX

